Exercise 30

Find the equation of the line that passes through the point $(1,-2,-3)$ and is perpendicular to the plane $3 x-y-2 z+4=0$.

Solution

The equation for a line is

$$
\mathbf{y}(t)=\mathbf{m} t+\mathbf{b}
$$

where \mathbf{m} is the direction vector and \mathbf{b} is the position vector for any point the line goes through. The coefficients of x, y, and z give the normal vector to the plane, which also serves as the direction vector: $\mathbf{m}=(3,-1,-2)$. The position vector of the point that the line passes through is (1, $-2,-3$).

$$
\begin{aligned}
\mathbf{y}(t) & =(3,-1,-2) t+(1,-2,-3) \\
& =(3 t,-t,-2 t)+(1,-2,-3) \\
& =(3 t+1,-t-2,-2 t-3)
\end{aligned}
$$

